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' ABSTRACT

The extended Kalman Filter (EKF), in the continuous time version,

has to be interpreted in the ItS sense. Therefore, processing of the

(EKF) algorithm is much more involved than has appeared to be the case.
n 2 (n+l)

An additional 2 differential equations have to be processed

when the EKF is properly interpreted.
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PRESENTATION

Consider the continuous nonlinear stochastic dynamic

system and observations given by

dx(t) =f(x(t),t) dt + G(t) dw(t), x(t.) Xo (1)

Anid

d z(t) = (x (t) , t) dt + dv (t) (2)

Where-R is an In' dimensional state vector.

f(x(t),t) is an In, dimensional vector valued

function.

x R n is an In' dimensional Gaussian random

vector with mean !0,and covariance P 0

A~t)C Rmis an 'in' dimensional observations vector.

h~x(t),t) is an 'Im' dimensional vector valued

function.

w (t) e Rn is an In' dimensional Wiener process with

zero mean and covariance Q(t).

v Ct) Cn is an In' dimensional Wiener process with

zero mean and covariance R(t).
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Under the assumption that x..' w Mt and v (t) are mrtually

independent of each other, and R(t) considered to be positive

definite matrix, the widely used Extended Kalman Filter (EKF)

is given by the' following-set of equations (1)

dx(t M f(i(t) t) dt + P (t) HTA Om(t)- [cli it)-

h(x (t) ,t) dt] 4 (to) = r 3

anat

-P(t) H T(x(t),t) R1 (t) H(x t),tPMt)

P(t0 ) = P0  (4)

Where1

H(x(t),t) (5

A h~~:xt~ I M~ )= ~

and

It is clear that th* matrices H(x(t) t) and F(x(t) ,t) as given

by equations (5) and (6) are state estimate dependent.

Hence, also the covariance matrix is state estimate dependent,

and a more accurate description of the (EKF) is as follows:

dic(t)=f(xVt) ,t)dt+K(x(t) ,t) [dz(t)-h(;(t) .t)dt)

K(7L
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G (t) Q (t) G )-

Where

T -K(x(t),t)=P(x(t),t)H (x(t),t)R (t) is the filter's

gain matrix.

Now, it is easy to recognize that equation (7) is an

Ito stochastic differential equation. Hence, it should

be integrated in the Ito sense. Therefore, whenever numerical

simulations of the (EKF) are carried out, equation (7) has to

be transformed into an equivalent differential equation in an

ordinary sense such as the Stratonovich sense. The Stratonovich

''equivalent of (7) is obtained by modifying the ih component

fi(i(t),t) by the following quantity

n m

tl a x (t)

Therefore, for the completeness of the EKF, the expression

aij(t ,t) for all i, J, and I

SK X~t,)

has to be included. Denote aKx t),t) by
4 xllt)

!,!__4



K- (x(t) t), and P(A(t),t by P- (t)t), thenx I
ax 1

a((t) 't)- HT (t) ,t) A R+) 9

xi (X

- .

ax

- .

*d A

- (x(t) ,t)=((t),tRC) t) ,t) Pj ((t 't) ,~mt)+

T P (t - (10)), )+

* x 0

*~)t HK.(t), )t) R (t)Ha(k(t)tP 9 ^t 1 ]t

2..
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a 3h, (x (t) t)Lt t)(1

and

Fii xltt=Fl~t),t) (A M [ =fP(tE,t) Mt
[ 3xx. (Xx (t{t) =xt)

ax i  xj x Ml= Xl M

Conclusion:

The continuous time EKF has to be interpreted in the Ito

sense. Therefore, the actual computational requirement

for implementing the EKF is increased. An extra n matrix

differential equations for Pi ((t),t) , i=l,2,...n are
1

coupled to the differential matrix Ricatti equation for

P(x(t),t). Also, the nonlinearities f(x(t),t) and h (x(t),t)

are assumed to have mixed second order partial derivatives

with respect to the components of x(t). Of course, if an

integration routine that conforms with the Ito definition of

X stochastic integral is used in processing the (EKF) algorithm,

then it is sufficient to process equations (7) and (8).

Among the widely used integration routines, the rectangular

routine is the only one that conforms with the Ito definition
of the stochastic integral. The discussion in this note

applies in a similar way to any of the many suboptimal filters

whose gain and, or covariance is estimate dependent.
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In practical implementAtion, the filter equations (3) and (4) are

d iscretized. Usually the time increments are taken to be small enough

to assure acceptable accuracy. In order to conform with ito's defini-

tion'of stochastic integral, the system matrices F(i(t),t) and H(i(t),t)

should be held at their values corresponding to the beginning of each

particular increment.
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